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Soluble two-species diffusion-limited models in arbitrary dimensions
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A class of two-specieghree-statesbimolecular diffusion-limited models of classical particles with hard-
core reacting and diffusing in a hypercubic lattice of arbitrary dimension is investigated. The manifolds on
which the equations of motion of the correlation functions close, are determined explicitly. This property
allows to solve for the density and the two-poitwo-time) correlation functions in arbitrary dimension for
both, a translation invariant class and another one where translation invariance is broken. Systems with
correlated as well as uncorrelated, yet random initial states can also be treated exactly by this approach. We
discuss the asymptotic behavior of density and correlation functions in the various cases. The dynamics studied

is very rich.
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[. INTRODUCTION given above do not seem to imply a simple relationship to

integrable quantum Hamiltonians.

Nonequilibrium statistical mechanics has witnessed re- The generat-species bimolecular reaction—diffusion pro-
cently a resurgence of interest. Though over 50 years old, theesses are characterized bs+(1)*—(s+1)? independent
field is still in its infancy. Powerful concepts and tools are parametergreaction-ratesand we have to imposes2 con-
being developed, and yet much progress remains to be dongtraints to close the hierarchy of the equations of motion of
The understanding of classical stochastic many-body syseorrelation functions. As few exact and explicit results for
tems is of relevance to a wide class of phenomena in physiatie dynamicsof multispecies processes are availafihepar-
and beyond. In this context, a class of models describingicular in dimensiongi>1, see the discussion at the end of
diffusion-limited reactions plays an important rdlé]. The  Sec. Ill), we decided to investigate in some details and gen-
natural language to describe the stochastic dynamic of erality the soluble two-species bimolecular diffusion-limited
classical bodies is that of the master equation. Formally, theeaction systems. In this paper, we focus on the two-species
dynamics can be coded in an imaginary time Sdhrger  problem §=2) and obtain, in arbitrary dimension, exact re-
equation, where the Markov generator plays the role of theults. A particular physical application of this work to a
Hamiltonian(see, e.g., Ref$1,2] and references therginn  three-stategrowth model will be presented elsewheid].
the past, various representations in terms of spins, fermions The paper is organized as follows: the remainder of this
or bosons have been used depending on the physics beisgction will be devoted to definitions and notations. In Sec.
emphasized. A powerful method that relies on bosonic fieldl, the equations of motion of the density and two-point cor-
theory and the renormalization group has been applied byelation functions are derived. The constraints that ensure the
Cardy and collaborators to deal with low density systems irsolubility of the problem are explicitly identified. We clas-
arbitrary dimensiongsee, e.g., Ref 3]). In one spatial di- sify the soluble manifolds which will be investigated in the
mension alternative approaches have been proposed whisequel. In the first part of Sec. Ill, we study the Fourier—
take into account the hard core of the classical partides, Laplace transform of the density in the soluble cése a
e.g., Refs[1,2] and references thergirSince the pioneering 56-parameters manifoldin the second part, we compute on
work of Glauber on the stochastic Ising modél, various two manifolds the exact expression of the density in arbitrary
generalizations and extensions have appedeed., Refs. dimensions. We provide the asymptotic behavior of the latter
[5,6]) . A general approach has been proposed by &diil.  for three different initial conditions. At the end of Sec. Il we
The latter investigates the most general class of singlediscuss the relationship between our results and the solution
species models of bimolecular diffusion-limited reactionsof some models solved exactly in dimenside 1 [11-16.
that can be solved exactly. Upon imposing constraints on thén the first part of Sec. 1V, we give the exact dynamic form
available manifold, the equations of motion of all correlationfactor for an homogeneous and uncorrelatget random
functions close and, in that sense, the dynamics is completeipitial state. In the second part, we compute, in arbitrary
soluble. Via a duality transformation, Sdlaufurther shows dimension, the exact two-time two-point correlation func-
that on the 10-parametric soluble manifold, the spectrum ofions for random(homogeneoysuncorrelated as well as cor-
the stochastic Hamiltonian coincides with that of therelated initial state$we discuss the sensitiveness of the sys-
XXZ-Heisenberg moddkee also Ref.8]). In Ref.[9], Fujii tem to the presence of initial correlationsSection V is
and Wadati extend Scluis ideas to thes-species models of devoted to the study of the instantaneous two-points correla-
bimolecular diffusion-limited reaction processes. These aution functions on a manifold of translationally invariant mod-
thors derive the general constraints that allow for the equaels. We first deal with the one-dimensional case, which is
tions of motion of correlation functions to close and, simi-investigated for random uncorrelated as well as correlated
larly to the single species case, introduce a dual Hamiltoniaimitial states. Further, we consider the higher dimensional
with identical spectrum. They further note that in the generatase with randonfyet homogeneousind uncorrelated initial
multispecies case, the constraints of solubility the sense states. The last section, is devoted to the conclusion.
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For clarity and brevity’s sake, some definitions, as well asvhere the sum runs over thé ®onfigurations K=LY). At
some technical details, are given in the appendixes. sitei the local state is denoted by the kef)=(100)" if the
Consider a hypercubic lattice of dimensidnwith peri-  sitei is empty,|n;)=(010)" if the sitei is occupied by a
odic boundary conditions arld sites N=LY), whereL rep-  particle of typeA (1) and|n;}=(001)" otherwise. It is by
resents the linear dimension of the hypercube. Further asiow well known that the master equation governing the dy-
sume that local bimolecular reactions between spefi@sd  namics of the systems can be rewritten as an imaginary-time
B take place. Each site is either emigtienoted by the sym- Schralinger equation:
bol 0) or occupied at most by one particle of tyfpérespec-
tively, B) denoted in the following by the index espec-

J
tively, 2). The dynamics is parametrized by the transition E'P(t»: —H|P(1)), (5)
ratesl“giﬁ‘z‘, whereB,,85,83,84=0,1,2:

where H is the Markov generator, also callestochastic

Hamiltonian which in general is neither Hermitian nor nor-
(1 mal. The construction of thstochastic Hamiltonian Hrom

the master equation follows a known proced(see, e.g.,

Refs.[1,2,7,9). We define[1,2,7,9 the left vacuumy:

V(B1.B2)#(B3.Ba), ngg; B1t Bo— B3+ Ba.

Probability conservation implies

aiBy_ _ 8185
rﬁlﬂz 2 ;o Fﬁlﬁz @) ~
(B1.B)#(B1.85) KI=> {n}l. (6)
{n}
with
rPfa=0  V(B,.B,)+# Ba). 3 Probability conservation yields the local equati@tochas-
B1B2 (:81 ﬂZ) (B3 ﬁ4) ( ) thlty of H)
For example the rat&12 corresponds to the process
+A—A+B, while conservation of probability leads 1o;7 T TIH —0=(YIH -0
D IO TS T T T T T 5D, (M=, 2 s & (Mo =0= Gl =0
The state of the system is determined by specifying the (7
probability for the occurrence of configurati¢n} at timet.
It is represented by the ket wheree®, 1< a<d, designates, in Cartesian coordinates, the
unit vector along thex direction.
|P(t)>=2 P{n},0l{n}), (4) _ The two-species local Markov generator acts on two ad-
n} jacent sites, i.e.,

r sy re v reg reg rge re re
M5 S TS r% It rg rg rg rg
M TR N r% rE rE rE rE rg
M TR TR TITi Tl rioriori
| TE T T TR ovhorE R oo orn | ©
MR TE TR MR orEorBorR rhora

M TR TR T TR rE i ry ra
R Y

22 22 22 22 22 22 22 22 22
1-‘00 1-‘Ol 1-‘02 1—‘10 1—‘11 1—‘12 1—‘20 1—‘21 1—‘22

where the same notations as in REJ] have been used. (l=(111)®(111)=(11111111). (9)
Probability conservation implies that each column in the-

above representation sums up to zero. Locally, the lefThe action of any operator on the left vacuum has then a
vacuum(x| has the representation simple summation interpretation. This observation will be
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crucial in the following computations. Below we shall as- the density and two-point correlation function. F&#0, n?
sume an initial stat¢P(0)) and investigate the expectation denotes the empty state at site.e.,
value of an operatoD (observables such as density, gtc.

B n’=1-nf-nk. (11)
(O)()=(x|0e "[P(0)). (10
We evaluate the action ¢ on the operatora®,n?, taking
Il. DYNAMICAL EQUATIONS OF MOTION into account the local nature of the Markov generator:
Exploiting the properties of the left vacuugy| and de- —(XINhHmm=eer  —(XINEHm ms e (12)

noting byn®,8e{0,1,2 the occupation of sité by a par-
ticle of type 8, we derive below the equations of motion of As an example, the first term in the above yields

—&lnﬁqumﬁy 5:2012{<r$%+F$§+Fi’§><}|n%ni+ea}
=(X|(5o+ T 56+ T50) +[(I19+ 15+ 1) — (K5o+ oo+ g0 1(xInk,
TR0+ T T — (TES+ T+ T NXINA , a t [(T35+TE5+T52)
—(T59+ oo+ T XN+ [(Te+T a3+ T 55 — (Ta0+T o5+ T30 1{xInG,, e

+L(To0+ Foo+ I'gp) — (P93 + Toi+ Igd) + (T13+ 11+ I'iD) — (T1g+ Tig+ P19 IxInanf . o

(T o+ T+ Ted) — (T 3o+ T a3+ Ted) + (T 30+ T35+ 32 — (I30+ T35+ '3 1 xInn?

m+ed

~ B
+[(T0+ e+ 50 — (Foa+ Toa+ T3 + I+ T+ %) — T+ Tig+ D1 1 xInhng , o

~ A
+[(T50+ e+ 50 — (T + T+ oD + (Tp+ T3+ 3D — (T 39+ T+ T3 1xInEng e

(13

where the use of Eq(2) is required to substitute for For the sake of illustration, the first term above yields

I'11.T15,T'2. As expected, the stochastic Hamiltonian con-

nects the one-body initial operator to a two-body expression._ (}|nﬁn
The equation of motion for the density becomes

(at sitem)

A
m+e“H m,m+e%

=I'ga(x|+ (U= T5o) (X + (T51—T50) (I e
d d - ~ ~ &
G (0= g;(xIng e P(0)) +(I55~ Too) (XNt (53~ T'60) (X[ My e

11, 111 01 10y~ A LA

S (e + (oot T11— = T1DXNmNG ¢ ea
== <nm’ (Hm m+e“+Hm—eﬂ m)>(t)

~ : ; 11, 111 1l 11y~ BB

e + (oot T22— o= T20) X INmN - ea

11, P11l 1l il /= A B
+(Too+T12— Toa= T 1) {XINmN s ce

(19

In order to determine the second moments, we also need to

! +(T o+ T3 - T35—TaD(xIngn, 16
evaluate the following terms: (Pog+ 21~ T20= on)(xInm (16

m+e®-*

Notice that the evolution operator connects a two-body op-

TIAA LA ~1AALB g
— (XN M mmeea = (XN eaHmme e erator to a two-body expression.

~ BB _ ~  AB To compute the two-point correlation functions, we have
=X eeHmmiess = (XN ceHmmeea: (15 g distinguish the sites that are nearest neighbors from those
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that are not. If the sitesn and n are not nearest neighbors (12) AS+AB+BP=1204 12122
. . . 2 0 1 21 21 21

[dist(m,n)>1], the equation of motion reads
(13) Ch+Ch+Ch=r%+r2+1%,

d
—amﬁ:ﬁnﬁﬁxt):; [ PHm—eom) MR ®) (1) (14) C0+D0+Dy=T%+ T2+ 122,

+(NABMABH L ) (D)] (15) Co+Co+D3=T75+T15+ T3,
b b b_ 102 12 22
+ 3 LA H s e A0 (10 CorCorbrmlaartartal

@ the equations of motion of the density and two-point corre-
lation functions(and all multipoints correlation functiops
become closed. It is worth emphasizing that when the hier-
archy closes at the lowest level, i.e., at the level of the den-
sity, the equations of motion dll higher correlation func-
tions also close. This is a remarkable property. In the
expression$18) and(19), the ratesfgg have not been made
explicit for brevity.

A general diffusion-limited two-species reaction model is
defined on the manifoldyp,={I" 25 —{T' 24}, B (0,1,2)},
which has here 8-9=72 independent parameters. Let us
denote byVg, the restriction ofV,, on the (72-16=56
parameterns manifold defined by the additional constraints
(19): Vo=VpaN (19). The latter represents the manifold on
which the equations of motion of the correlation functions
are closed, i.e., the soluble manifold. We can further require
trani?Iation invariance, i.e.,(n'rnnjrw|r>(t)=(<n'0Anf:3;(t)

AB, AB ' =G, Vr.t [i,je(AB)] and in particular (npng)(t)
(M (N eeHm s ev—eo’ miea)) (D] (18) =(nEnM(t)=G2 - Imposing the above conditions in

The equations of motion af-points correlation functions €quations(17) and (18) and taking into account the condi-
are obtained in a similar way, with help (£2) and(13) and tions of solubility(19), we arrive at the manifol¥yansi_invan
(15) and(16). As is well known, the equations of motion of the restriction oV, on the translation invariant soluble dy-
classical (or quantum correlation functions constitute an namics. Notice thatViansi_invakd) =VsoMV'(d), where
open hierarchy which is not soluble in general. However, ifV' (d)={E3°=Eg?; FIP+F3P+Ald+Co(d—1)=F52
we impose on the B-32=72 bimolecular transition rates +F5%+Cid+Af(d—1); F3°+F3°+ A3(d—1)+Cad=F5?
involving two adjacent sites, the following 16 constraints +F53+ C3(d—1)+Add:; H2P+ H3P+ (C3+ BY)d+ (A?
[see Appendix A for the definitiong1) and (A2)]: +D8)(d—1) =Hb8+ H5%+ (A2 + DY) d+ (B2 +C3)(d—1) ;
A3+DY=B)+C§; G*+Chd+Af(d—1)=G5 +Ch(d—1)
+A%; G3°+B3(d—1)+D3d=G5%+B3d+D3(d—1); B
=D?% AS=CP.} Therefore this manifold has 7216—9
=47 independent parameters. In practice, however fur-
ther constraints may be required for the computations to be
accessible. With this remark in mind, we define the mani-

+(NBNABH hea)) (D] (A7)

while if the sites are nearest neighbors, we have

d
- &(”Q’B”A'B )(1)

m+e

AB
= <n'r‘;\1YBnm+eaHm,m+e“>(t)

+ 2 NP Hm—ee’ )Ny e (1)

A,B

(N B(NS 2 Hims comeatea’) ) (D]

+ 2 [N BHmme e )NEE ) (1)

a'#a

(1) AZ+A+AS=TI0+T11+T72,
(2) B3+B3+AS=T39+T33+T33,

(3) B3+A+AS=T10+T11+T113,

(4) A3+B3+AS=T20+T31+T32,
(5) C3+C3+C3=T91+T11+T31,
(6) D3+D%+C3=T53+T33+T32,
(7) D3+C3+C3=T2%+T13+T2},
(8) C5+DI+C3=T91+T31+T33,
(9) AQ+AJ+AJ=T20+T21+T%3,
b b b
(10) BS+BY+A)=T39+T33+1%3,

(11) BY+ AP+ AB=T20+T2+123,

(19

folds V"'={AP+Ch=Ab=CP=B2+D3=B3=D3=0} and
V'={Al =B3=CP=D3=Ga=G} = G = G§’ = H2P
=0 |n=1,2.
Summarizing the cases that we will discuss in this paper:
(i) For the case where translation invariance is broken, we
shall compute the exact density on the manifuld which
has 72- 16— 6=50 independent parameters,

Vi=NVgNV". (20)

(i) For the translation invariant case, we shall evaluate
both, the density and two-point correlation function exactly
on the manifoldV,(d),

V2( d) = Vsolm A (d) NV"= Vtransl—inva( d) nv” (21)

which has 47 16= 31 independent parameters.
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To conclude this section, it is worth noting that there are
few cases in which the open hierarchy of equations of mo- &fA(t)=(A3+C8)d+fA(t)(AT+A§+ Ci+C3d
tion can be solved analytically. The class of single-species
one-dimensional models for which the evolution operator +fg(t)(Bi+B3+Di+DJ)d, (24
can be cast into dree fermionicform is an important ex-
ample. However, the procedure of free “fermionization” d b b b b b b
cannot be applied to higher dimensions and/or multispecies g fa(t)=(Ag+Co)d+fg(t)(By+ B2+ D1 +D3)d
problems, contrary to the method followed here.

+ A (A2 +AS+CP+ CB)d. (25

Ill. THE DENSITY: GENERAL DISCUSSION We introduce the Fourier transforms @iy ®)n(t), i.e.,

In the first part of this section we compute exactly the AB AAB - “AB
Fourier—Laplace transform of the density on the (NEB0=_2 (N%)(0)ePMe(nso)(t)
56-parameters manifol®/,, which is, as are correlation pelBz
functions, directly related to light scattering measurements in 1 -
real reaction—diffusion systemgl7-19. The computation == > (nABy (He Pm, (26)
on the most general soluble manifold is here manageable L™ m
because the linear differential difference equations governing - . o
which can be studied analytically. For higher order correla-The solution of the homogeneous problem in Fourier space
tion functions and/or for the-species case, wite>2, the reads
problem is however technically much hardere shall come AA A A
back to the general case in a future worlk the second part (N (1) (n;)(t=0)

of this section we provide the density of speckeandB in (B (1) =Mt (ABy(t=0) | (27)
space and time, both in the translation invariant case and in a P P
situation where translation invariance is broken. On the
manifold (Vpai ) Vso) D (Viansi-inval ! Vso) » We have whereM; ;(p),(i.j) € (1,2) is asX s=2X 2 matrix with the
entries
d = e
gi(nm = (A3+CHA+(np) (1) AT+ CH)d Mas(p)=(AT+CHA+ 2, (AjelP et Cle™ Pea),
A A - =
+ 2 (AN o) (0 + CY iy (1] M, Ap)=(BI+DYd+ 3 (BieP et DieP),
(28)
+(nBY(t)(B3+D3)d+ >, [BHnZ, . )(t - -
< m>( )( 1 2) za: [ 2< m+e >( ) Mz,l(p):(A?‘FCg)d"'z (Akz)em.ea_i_ctl)eflp.ea),
+D¥(np ) (D], (22)
M (p)=(B}+D3)d+ > (ByelPea+Die P c).
d
a<nﬁ>=(A8+ Co)d+(n2)(t)(BY+D3)d The eigenvalues of the matri®t, which represent the in-

verse relaxation times of the system, control the asymptotic
behavior of the density,

M + M
A (p)= 11(P) : 24P)

+ 2 [BYNE, ) (D +DYNS_ ) ()]

+H(NAY (1) (AR+Chd+ D, [AXNA, (b

NIM1A(P) — Mo A P) TP+ 4M1 oA P) Mo ()
+CYNA_ (D] (23) - 2 '

(29

Let us first consider the most general soluble case which it has been shown in considering the one-dimensional
characterized by the set of equatid@®) and(23). The so-  alternating-bonds Ising model obeying Glauber’s dynamics
lution of (22) and(23) is split into the solution of the homo- [20] that the relaxational eigenvalues of the analog of the
geneous systenin)u(t) ((nE)n(t)) and a functionfa(t)  matrix M allow to identify the critical(but nonuniversal
(fg(t)) that takes into account the inhomogeneity, i.e., behavior: it is determined by the long wavelengtimodes of
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the analog of the acoustia _ branch. One-dimensional R .
alternating-bonds 3, >J,>0) Ising model, with Glauber's So(P,®)=(Nny(0))
dynamics, exhibits a nonuniversal critical dynamical expo-
nentz=1+(J,/J,) [20].

In the sequel we shall need the zero-momentum22

A_(p)—My4(p) B )\+(p)—M1,1(p)}
o—N_(p) o—N.(p)

matrix M(p=0)=.M(0),
My 4(0)=(AT+A3+CI+C3)d,
My A0)=(Bi+B5+Di+D3j)d,
M3(0)=(AT+AZ+CP+C3)d,
M, A0)=(BY+B5+ D5+ DY),
whose eigenvalues we shall denote, for short,

Y+=A+(p=0).

Notice that atp=0, TrM(0)<0 and detM(0)=0.

[M(P)—Ml,l(p)][?\—(p)—Ml,l(p)]}
MiAp) (=N (p))(@=N_(p))

Op,0

[’}’7_/\/11,1(0)]
M;yA0)
7’+_M1,1(0)
o(w=7v4)
[7+ - Ml,l(o)]
M; A0)
Y- —M;4(0)
o(w=y_)

(A

X(NH(0)) + »

+

+C3)d—(AS+CPd

_ %o
Y-—Y+

(AS+Cd)d

—(A3+C8)d} (31
Notice that the inhomogeneous part of the equations of mo-
tion give rise to a zero-momentum contribution which we
shall omit hereafter. As expected the poles in thelane
occur at the relaxational eigenvalues.

(2) Next consider the case where the matid(p) is
nondiagonalizable and nontriangular:A(p) =\, (p)

We are now in a position to compute the Fourier—LapIace:)‘—(p) =[M14(p) + My Ap)1/2 and My 1(p) # M, Ap) -

transform  S§%(p,w) of the
= (1LY = fodte Pm e nfiB)(t).
We consider initial

tain

1 A_(p)—Myp)

So(p,w)=

density: S55(p,w)

i states  (M®)(0)=(1/
LYZ(min)(0) € P (i ®) (0)= 25 . 152(Ny ®) (0)€P ]
and assume that the matrix\(p) is regular [i.e.,
detM(p)#0]. We shall distinguish four cases.

(1) We assume that the matrix1(p) is diagonalizable,
i.e., A (p)#N_(p), but not triangularM; 5(p) #0, and ob-

A_(P)—Ni(p)
N (p)—My4(p)
o—\_(p)

. My Ap)(NS(0))
[o=A:(P)[w—X_(P)]

5p,0
Y-—7Y+

o—=N(p)

(n5(0))

+

b b 1
~MiA0) (Aot Cord} T

0
Y-"7+

b b 1
ML) (Aot Cod} T

and

{[y-—M14(0)](A§+CHd

”"; {7+ —My0)](A3+C3)d

We can compute™ (Pt with the help of a Jordan decompo-
sition of the matrixM(p), namely,

eMP)t=p(p)eM PIp-1(p), (32)

where P is a regular 22 matrix and M’ (p)=M;(p)
+ M,(p) is the sum of a diagonal matrix1, and a Jordan-
block matrix. M,(p) is chosen such thatM;(p), M.(p)]
=0. M,(p) is nilpotent[ (M,(p))?=0]. Thus,

eMP)lt=p(p)eM Ptp(p)-1
_(a(p) e(p))(e“m‘ x(p)tewﬂ)

B(p) dop))\ O ehPt

X( 8(p) —e(p)) 1
—B(p)  a(p) | [a(p)é(p)—B(p)e(p)]’
(33

with

a(p) e(p)
P( )=( ) (34

B(p) 6(p)

which entries are

_ N(p) ( My A D)Mz,l(p))
*(P)= T ip) detM(p)
_ AMp)Maa(p)
(30) B(P)=~"Getrmip)
_MP)[Mzp) =My Ap)]
e(p)= detM(p) ,
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(U3 T3 42— argerdy — argerss

5(p)= \(p) (1_Ml,l(p)[Mz,z(p)—Ml,z(p)]_ >

My Ap) detM(p) B.8'=0,1,2

(35) L
+AT28r Y 4 4T T2 — (TLE_28)(TEL-TE2)]

The matrixP(p) is regulaf detP(p) #0)] if M(p) is regu-

lar. This decomposition leads to the form factops#0). = > [T28r6 +F —(F —T28)
B,8'=0,1,2
SA(Pow) = — (NS (0)— MP) op N g
D) [«—X(p)]detP(p) X (I =T858 )= (Igo—TE0)(N'fs'—T56%)].  (38)

These are necessary conditioffmit not sufficienk for the
matrix M(p) to be nondiagonalizable. This means in turn
that it is sufficient(but not necessarythat one of the rela-

><[a2<p><ﬁ§><0>—a<p>ﬁ<p><ﬁ;‘><0>]}.

tions e violated for the matrix\(p) to be diagonaliz-
(38 tions(38) be violated for the matrix\1(p) to be diagonali
able.
. 1 ) _ : .y .
SB(p. ABY(O If M5 (p)=0, the matrixM(p) is triangular, i.e.,
I AR PRNEN =Ty
Ab+Ch=Al=Cb=0, (39)
~B 2 ~A
X[a(p)B(p)X(Np)(0) =5 (p)(np>(0)]} which in terms of reaction rates imply
37 2B B2 2B B2
_ _20312(F10+F01_F00_Foo)
Notice that Ny (p)=A_(p)=N(p)=[My1(p) A=01,
+ M, Ap)]/2, imply the following relations on the reaction
rates: = >, (I2-12)
B=0,1,2
2 ({8 +TETEo) = > (re-re, (40)
BB =012 B=0,1,2
< > (Tersrt+rerel), So for example, iflg5=Tg5=g;=T=TF;=T15, the
B.B'=0,12 relations(40) are fulfilled.
If the matrix M is diagonal, i.e.,M;(p)=M;jAp)
' ' =0, and in addition tq39) and (40), we have
> gy i) 439 and(40
ﬁ,B’:O,l,Z Ba+ Da Ba Da 0
= X (THTe8 +Tgres),
=012 = 3 (T Tg-Ti-Tg)
S [T TG R TS .
ppmonz = (I'55—T3p)
B=0,1,2
+(TY+T8Y (M2 +TE2)] P
= I'5;—Tky). 41
5:0’1’2( 20 00) ( )
< 184 1By (28 482
B,Eoylvz[(roo T'00)(T'oo +T'00°) As an example, relation€39)—(41) are fulfilled if one has
MY=TR=TH=TE=T5 and TH-Ti=T5-T4

18, 1 BLy 128 B'2 F F01
(2o + To2) (o +T'op)], It follows from this discussion that when the reaction
rates, in addition to the solubility constraints9), also vio-
> (TLETE2+TerE 2+ T28rE + TEAr2E") late conditions(39) and one of the relatione38) which are
B,8'=01,2 sufficientbut notnecessarythe first case applies. When, in
addition to(19), the relations(38), are fulfilled [recall that
= > (TY¥re2+rsrisyriret (38) arenecessaryut notsufficientconstraint$and the con-
B,8'=012 ditions (39) are violated, then the second case applies. When
gl reaction rates satisfy39)—(40) in addition to the relation
+I50060 ), (19), then the third casésee below applies.
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Similarly, when reaction-rates satist$9)—(41) in addi-
tion to the relation(19), then the fourth casésee below
applies.

(3) If My 4(p)=0, the matrixM(p) is triangular, thus
the eigenvalues of\(p) are M (p) and M, Ap). We

have already discussed the physical implication of this case

[see Eq(40) abovd, and we have§#0),

eM(p)t:eMl,l(P)t(l Ml’:—(p)t> (42
which leads to p#0)
PV S PN A
So(P)= S 1| PO oy
. <ﬁB>(0)
B __ P
So(P,w)= o—My(p) “3

(4) If both M, ,(p)=M1Ap)=0, the matrix M(p) is
already diagonal[see (40)], and the form factors read

(p#0),

PHYSICAL REVIEW E 63 036121

Exploiting the well-known properties of Bessel functions

[j e (A,B)], we arrive at
(Nl (1) =p;j(=)(1—e 9l

+efd| Bj/2|t

(47)

The steady densities are, respectivelpa(©)=[(AJ
+C8)/2|yal1, andpg() =[ (AS+C8)/2| yg|]. Below, we in-
vestigate three different cases.

(i) The (t=0) initial density(for each specigss given by
Pj»

<n >(t 0)= PJ(0)5m m’ - (48)

The asymptotic behavior is them(>1 andu;=L2/4|C;|t)
) *@ t

() () ~pj(=) + ), (49

SA(Pw) = (np)(0) ()= (np)(0) where ¢!, are known functions. Further, we assurg|
EAL w—Miyq(p)’ O w—MyAp)’ >0, since for|y|=0, Eq. (19) tells us that(nj)(t)
(449 =p;(»)=p;(0)=csteVt, where

In the sequel we focus on the case where the matrix |Bj] 5
M(p) is diagonal and provide explicit expressions in real ©;=min d|7’r| d( |CJ|(2Jre 12)]1, (50)
space and time for the density. This is equivalent to imposing
the six supplementary conditions characterizidg [see 0 if ©;=dly|>0
(39-(41)], B3+D3=B3=D3=A+CB=A=CP=0. Let - b
us first compute the density for the case where translation $i= di2 if 9, d(' Bjl —|Cil(2+€%2) ). (5
invariance is broken, i.e., the manifolt DV, of dimension . !

72— (16+6). With the above constraints, the densities obey

the following equations of motion: For ®=0 and y#0, the density decays algebraically, i.e.,

(M) (1)~ pj() + it~ 2.
(i) Initially, the particles(for each specigsare confined

d
a(n{»:(ASJr C3)d+(nf) (1) (AZ+CH)d in some region of space, i.e.,

. . j n) ifosm=<L/2
+§ [AY(NA (D +CYNL ()], (45) (M) (=00=1 0" Ciherwise. (52
d . nh if L2<m=<L
B b, ~b B b, b i #iV(t=0) =
—(n)=d(Ag+Cp) +(n)(t)(B{+D5)d n t=0)= 53
dt< m> ( 0 0) <m>( )( 1 2) <m >( ) [0 otherwise. ( )
We h h
+3 [BYND, ) (D +DYNE ()], (45 Ve Mavethen
j —0:t i '/’Lw,z
In order to discuss the solutions of these equations, it is N(D~pj(e) T 7 drmat 4 | (54)
convenient to define the following quantitiesu,
=\C{/A;, wug=\yD1/B3, Ca=VAC], and Cg where®; has been defined if50) and forr=m-m’, |r|

_\/B"SDlE Furthermore, we introducB,=2(A3+C3)<0, >1, 12/Ct<oo:
Bg= 2(Bl+ D5)<0, y,=A2+A3+C3+C3<0, yg=B"

+BJ+D)+Dj<0, and ¢,=Inpy;, j=AB. A site on the
hypercube is denoted byn with d components: m
=(mg, ... M, ... my.

0 if®;=d|y]|>0

B

1 if @, d(——C(2+ej2/2)). (59

;=
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If ®=0 andy+0, the density decays as a power law, i.e.,CO and O to CQ@ on platinum substrates. The model solved

(NI (8) ~ pj(20) + [ 1+ (P D] in Ref. [11] describes the dynamics of classical stochastic
(iii) The initial distribution of particles is assumed to be particles of two speciescalled A and B) with hard-core
nonuniform, i.e., constraint and so our approach applies to this model. How-

ever, as the system solved in REEL] is atwo-states model
(in Ref.[11], the stochastic variable is a “spin variable;
==+1, +1 corresponding to aA particle and—1 to aB
particle at sitg). In this model there are no vacancies, it is
(56) not in the class ofthree-states models which we specifi-
cally study there. It is, however, possible to recover previous

n, ifm=0
(N (t=0)= n{)

With (56), we arrive at (n;>1 andu;=L%4Ct) results[11] considering the systefd1] in the framework of
ot the two-statesanalog of our approacfi7,9]. To do so we

(LY ()~ pi () + ) e ' (57) relabel Clenentet al. B particles by vacancies symbolized

m J ot by 0 (the A particles are symbolized by 1), thus reactions
occurring in Ref[11] are described by the rateE;;=T91
When = 3= IGh=pia; [bh=I{0=Liad; T8=rB=rii=rg]
B, e =pl4+1/4d; T11=T39=-p/2; and F18=F83i=—(p/2
0,=d T_Cj 2+ >/ +3/4d). For such systeménvheres=1), the Zz°=2 solu-

bility constraints which are the analogs dfl9), read[7,9]
decays ag59), with 90+ oo+ Mo+ oo=T19+ 11+ Tg1+ 151 and I+ 1'gg
+I30+Ta=T2+T119+T95+T1s. These constraints are
2 @i f0<a<1l fulfilled for the previous choice of ratdsimilar to the choice
) o< of [11]) and thus the dynamics of the system is soluble in
b= (58 arbitrary dimensions, i.e., the equations of motion of the cor-
if @;=1. relation functions are closed and obtained aglid), (17),
2 and(18). As an example, for the density we have the follow-
Again, as®;=0, Eq.(58) holds. ing~ equatioNn of motion[7~]: (d7dt)(n;) =B ,((Nj14)
Notice the crossover at;=a=1, where the density de- —(n;))—p(n;.,), where nj=n,—3 and B;=T23+T1g
cays as —T'95—Tss=1/2d are the same quantities defined in Ref.
(YD) ~pi () [7]. Noting that in language of Ref11] yJE<zj)=2<ﬁj), we
m Pi recover the result of Ref[11]: (d/dt)y;=(1/2d)Avy,
In(4u;|C|t) d) —pgj, wtr;]i(relA yj(jEEta(t'yj+a_f7j).t'8im;|arlr):' V\r/]e can rel—
—_— |. roduce thegclosed equations of motion for higher correla-
2 J4wlC P N )

tion functions. Saturation phenomena as in R&l] should
By contrast, when®j=d|yj|>0, the density behaves as also occur in the class of three states models. However, the
(Nl (t)~pj(=) + ¢l e 9l Here we have restricted our

analytical treatment would be more complex than in Ref.
attention to the case whereQy; <1, Vi,0< «;<1, while in

H 2
+ L[ e dUBR-ICjli2+ (T}t

[112] two-states models.

general we could consider different regimes in the different Let us sl_<etch the strategy Wh'Ch one should follow to treat
directions(for example, 6<a;<1, a;=1, anda,>1). The saturation in the models considered here. For translationally
) 1 ) 1— 4 1 .

corresponding asvmototic behavior follows as above invariant systems one should solve(lmear differential-
P g asymptoti o difference systems of coupled equations describing equations
To conclude this section let us focus on the manifalg f moti { lation funcii V(D) i e (A B
where the density is translationally invariant. On account of?! Motion ot corretation Tunc longny,ni)(1), j < (A,B) pay-

(46), we obtain two coupled linear differential equations'ng| due attention to thg boundary terms=ll and |_m—||
which are easily integrated. The result is =1 (see also Sec. M This system is solved in Fourier space

and involves a general>X33 matrix with nonconstant entries.
pj(t):pj(oo)+[pj(o)_pj(oo)]e*dlﬁlt_ (59) Qne should, as it h_as been_ done for the_ densﬂy, carefully
discuss the properties of this matrix, which is a technical
The above solution allows us to solve for the correlationmatter. In fact such a study should be carried out for some
functions onV,(d). These in turn will be useful to solve specific model.

perturbatively the problem on the manifold,ansi—invafd) - A further two-states model which can be solved exactly in
Let us now discuss the relationship between our resultd=1 is the Voter mode(see, e.g., Ref.16]) described by

and the solution of some models solved exactlginl [11—  the reactions rateE =I'30=T39=T31=T31>0. Since this

15] earlier. model fulfills the previous “two-states”solubility con-

In Ref. [11], Clementet al, solved exactly(the fast ad- straints it is soluble in arbitrary dimensions. With theao-
sorption rates versignof the Fichthorn, Gulari, and Ziff statesanalog of(14), (17), and(18) we obtain the(closed
(FGZ2) model[12] introduced to describe the conversion of equations of motion of the correlation functions. As an ex-
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ample, for the density, we have[16] d/dt(n;) chanics that are available are those for single-species models,

=202 ,((Nj 4 o) +(Nj_ o) —2(N;})). in particular for one-dimensional models which can be
Another important model which has been studied rigor-mapped onto free fermior18,19,23 and other related

ously in dimensionsd=1 is the (irreversible reactionA  [21,16 models. These exact results are useful, as starting

+B— U+ . For this model, Bramson and Lebowitt4]  points for perturbative calculations or for checking numerical

obtained, rigorously, upper and lower bounds for the longcomputations. This section is devoted to the study of the

time behavior of densities. However, systems considered iB0-parametric manifolé/,. We are interested in the density—

these works, Ref14], allow the multiple occupancy of a site density correlation functions

by particles of the same species. Later, Belitfk§] gener-

alized the study of Refl14] to the case of hard-core particles (n' (H)n}(0))=(x|n" e Hnl|P(0))

reacting according t\+B— @+ [with ratesI'95=199 o

=I'(=1)] and A+J—J+A; B+J—J+B (with rates =(xIn,e MP"(0)), i,je(AB),

Ia=TgI=T23=T35=1). He obtained rigorously an upper (60)

bound for long-time behavior of the densltipr an uncorre-

lated initial state with equal species densitigsa(0)  where|P(0)) denotes the initial state of the system. From
=ps(0)<1/2]: Ve>03T(e)<x=, so that for t>T(e),  the above we see that the evaluation for the correlation func-
pro(t)<t , fords=4 andp_...(t)<C*t™*, ford>4;  ion with respect to the initial statl?(0)) is equivalent to

where C* is a positive constant. We can now wonder compytation of the density of particles of spedieat sitem
whether such a model can be dealt with in our approach. Ag,, 5 system in an initial state described BP’'(0))

the model considered by Belitsky idlaree-statesnodel, the Enﬂ P(0)).

equations of motion of correlation functions are given by \ye now distinguish the case where correlations are absent

(14), 217)’ ar;d (18) with A;‘ZZCal: %2: Da1: _aAlzb_B% in the initial (with broken translation invariantestate from

=—-C;=-D3=1 and Ay=B;=B;=D1=D3=A;=A;  that where they are present.

=Ab=CB=CP=C5=0. Unfortunately the solubility con-

straints(19) are not fulfilled for such a modétonsider, e.g.,

the fourth constraintA3+ B3+ A3=T3+ 31+ T'33=T=0,

but in this modell'’=1) and the equations of motion give

rise to an open hierarchy which cannot be solved. In this section we assume uncorrelated initial states with a
Results ind=1 have also been obtained by approximaterandom and translationally invariant distribution of particles

methods(mean-field theories and/or by scaling and heuris- ©f type A [density pa(0)] and of type B [density pg(0)].

tic argumentgsee, e.g., Ref1] and references thergirAs  Therefore in our notationgP(0)) becomes

an illustration of these studies let us consider the work of oLd

Toussaint and Wilczek. In Reff13], a system of two species 1-pa(0)—pg(0)

A andB reacting according t&+B—J+(J, in addition to IP(0))= pa(0) . (61)

their diffusive motion, is studied numerically and an approxi-

mate method for calculating the densities at long times is ps(0)

proposed for system with equal densitiesp(0)=pg(0)].

Approximate result§13] predict p(t)~t~ 94 in agreement

with Bramson, Lebowitz14], and Belitsky[15] rigorous

results in the one-dimensional case, but in disag:?reement in (N(0INF(0)) = pA(0) O+ pa(0)*(1= B,

higher dimensionsl>1. The approach in Ref13] is a con-

tinuum macroscopic approach and cannot take into account (N2(0)NP(0))=pg(0) S+ pa(0)2(1—8y)), (62

the hard-core constraint of the particles . In addition, it takes

into account of fluctuations in an approximate and uncon- (pA B —(nB A = — )

trolled way. It is therefore difficult to compare their method (m(0)7(0)) = (nm( O)7(0)) = Pa(0) e (0) (1= o)

with the microscopic exact results presented here. We begin this section by computing explicitly the Fourier—

In sum we have seen that the two-states formuldfidof | nj5ce transform of the two-points noninstantaneous corre-
the method discussed here allows to recover some previoysiion functions, i.e., the dynamic form factors measured in

exact results in arbitrary dimensiofikl,1€ for the stochas- the light scattering experimenf&7,19
tic models of hard-core particles. Our approach applied on '

three-states modeléof hard-core particlesis in a sense B
complementary to the rigorous resultg@6] and is useful to  sij 5 w)Ei > dte—iﬁ.m’—wt<ni (t)nl(0))
describe exactly physical models such asthaee-states v LY e Jo m
growth model[10].

A. Noninstantaneous two-point correlation functions for
uncorrelated initial states

So that we have

_ - 7i[5.m'7wt i j
IV. NONINSTANTANEOUS CORRELATION FUNCTIONS Ld m’E 0 dte <nm’=m7|(t) n O(O)>'

=m-I|
To our knowledge, the only exact computations of two-
time correlation functions in nonequilibrium statistical me- (i,j)e(A,B). (63)
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Using the results of the preceding section and assuming
regularity and diagonalizability ofM(p), we find for the

dynamic form factors

1 A_(p)—My1(p)

AA, < _
STP O =T o ()| w—hs(p)
N+ (p)— My 4(p)
)[R0 pa(0)5y0

B M1 AP)pa(0)ps(0)](Sp0—1)
PO (D To—r_(P)]
5p0

-~ My 0)(AF+ Chd

+

—M1,2(0)(A8+C8)d]m

— %0 1y My (0 (ARG
Y=+ T o e

b, ~b 1
— M1 A0)(Ag+ Co)d]w(T (64)

o)’
A_(p)—My4(p)
o—X.(P)

1
A_(p)—A.(p)

3 Ni(p)—My(p)
w—\_(p)
My AP)[(p§(0)+ pa(0))8, 0~ ps(0)]
[o—Ni(P)I[w—A_(p)]

S18(p,w)=

pa(0)pg(0)(p0—1)

Sp0
Y-—7Y+

+

[(y-=M14(0))(AG+Cp)d

b, ~b 1
—Ml,z(o)(AoJfCo)d]w(w—w

5p'0
Y-—Y+

[(y-—M14(0))(AG+Cp)d

b, ~b 1
— My A0)(Apg+ Co)d]w(T (65

v-)
and
STB(p,w)=[(p(0)+ pp(0))5, 0~ pa(0)]
N_(p)—My4(p) _)\+(p)—/\/11,1(p)}
w—\_(p) 0=\, (p)

[M(P)—Ml,l(p)][?\—(p)—Ml,l(p)]}
MiAp)(0=N(p))(@=N_(p))

Sp0
X pa(0)pe(0)(Sp0—1)+ o

Y+

[[V_Ml,l(o)]
M;A0)

¥+ —M;y4(0) Op,0
X —
o(o—yy) Y-~

(AS+CS>d—(A8+CB>d}

[ys— Ml,l(o)]
M A0)

PHYSICAL REVIEW B3 036121

y-—My4(0)
w(w=y-) '
(66)
A-(p)—=Mya(p)
w=\_(p)

X (A8+C3)d— (AS+ cg)d}

STAP,©)=pa(0)ps(0)( 8,0~ 1){

B )\+(p)—M1,1(p)}
o—=\.(p)

[N (P) = Mp(P)IIN-(P)— M1 4(P)]
MyiAp)lo—N (p)[o—N_(p)]

X[ (pa(0)+pa(0))8, 0~ pa(0)]

59,0 [y-— Ml,l(o)]
Y-+ M;1A0)

7+_M1,1(0)_ 5p,0
o(@=vy) Y-V

[y+—M14(0)]
M40)

_—Mq40
Y _1,1( ). 67)

w(w=y-)
Again the poles of the dynamic form factors give the relax-
ational eigenvalues. As in the preceding section, we could
also compute the correlation functions in the case where
M(p) is nondiagonalizable, triangular or already diagonal,
but for brevity’'s sake we prefer to focus here on the nonin-
stantaneous correlation functions on the 50-parameters mani-
fold V;.

With the help of Eqs(45)—(47), we obtain the noninstan-

taneous two-point correlation functions on the manifuld
as

(A (NA(0)) = pa() (1— e~ dlalty

+pa(0)e a4 [ pa(0)— pa(0)]

(A3+CH)d

—(AB+cChyd

(AS+CH)d

—(Ag+Ch)d

-1
X H ﬂza a@ (lBA‘tIZ)lma—la(cht)l

a=1...d
(68)
(NA(ONE(0))=pa(ee)(1—e 47t + 5 ,(0)pg(0)
x| @ dlvalt — H M;\;a—lae— (|Balt/2)
a=1,... d
Xl -1, (2Cat) |, (69)

(n(Hnf(0))

=pg(=)(1—e 978l + p2(0)e 78t pg(0)

—pé(O)] :I[ ) Mga”ae* (‘BB‘UZ)Ima*u(ZCBt)’
(70
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(n(Hnf(0))
=pe(=)(1—e 978t + p,(0)pg(0)

I
Mg]a @@ (|BB|t/2)

><|ma_|a(cht>}

with the notationsr=3,r.e,, €=€3,€e,, andr,=m,
—l,=oL. We are interested in the asymptotic behavior
[|Cj|t>1,e(A,B) and u;=L%4|C|t<e] of the above

correlation functions in two regimesi) when |m—I|=]|r|
=(Z41 .. gr2)Y2~L>1, in this caser=r/L=0(1); (ii)
when|m—I|=|r|<1, in this caser=r/L=O(1/L).

(71)

PHYSICAL REVIEW E 63 036121

(nB(ONP(0))=pg(=)(1—e Welt)+ p,(0)pg(0)e I8l

(r— Eslcslnz)

+ 2ug—
exp( 2doug 2ICt

— — 62
x e~ dl(IBsl2)~[Cal(2+ /2]t | (0) pg(0)

e*da’2 ug

+O(1kY) |. (75

1-—F
(4m|Cglt)"?

In the regime|B;|=|Cj|(2+ €*/2d),
point correlation functions decay as

(r—e&|Ci|t)?
2, _
exp( 2do“y; 2ICit

i e (A,B), the two-

(n(t)nf(0))~ G

It is worth noting that the autocorrelation functions

(where|m—1|=0) are obtained in the second regin@s.
With the above, we finally arrive at

(N (ONN0))=pa()(1—e d7alty + p2(0)e~dI7alt

+ exp(z do?up

B (I — €alCalt)?
2|CyJt

y [pa(0) — p3(0)]e97"Ua
(47|Calt) 92

) e~ L(IBal2)=[Cal(2+ eilz)]t

+0O( 1/td)],

(72

(NA(ONB(0)) = pa(e) (1— e~ 47alty + p ,(0) pg(0)edl7alt

(r— gA|CA|t)2)

2 _
+ exp(chr Ua 2ICAt

2
x e~ dlIBAR)Z[CAI2+ 2ty (0) pg(0)

e*dozuA

+O(1h%) |, (73

1_ -
(4m|Cplt)2

(nB(t)nP(0))=pg()(1—e elt)+ p2(0)e el

(r— EB|CB|t)2)

2. —
+ exp( 2do“up 2ICalt

« @ dl(|Bgl/2)~|Cgl(2+ &2t

y [ps(0)— p3(0)]e 47" Us
(47| Calt)¥2

+O(11Y)

(74

(i,j)e(AB). (76)
Note the nontrivial dependence on dimensionality and the
drift term in

(r—€|Gi|t)?

2Tt ) (7o)

exp( 2do?u;—
We remark that this is consistent with the result obtained in
one dimension for free fermiod9]. If ¢,=0, than there is
no drift:
(r—€|Ci|t)?
2 —— =
exp(chr U 2ICit

B. Noninstantaneous two-point correlation functions onv,:
Correlated initial states

Let us consider correlated initial states described by a
distribution having the following properties(i) when
dist(m—1)>0,

momlon=k; T1 @-a, olrd i,

=1,...{

Aj>0, Ky>0, r,=[m,—l,/,

a

(i,j) e (A,B);
(7

(i) whenm=1,

(N(0)Nf(0))y=(N},(0)) 8 ;=(n{(0)) & ;=pi(0)&; ;.
(78)

The initial distribution in this section has been chosen in a
special form, namely in such a way that computations can be
carried out explicitly to the end. Thereaspriori no physical
justification for such a choice, which has already been con-
sidered in Ref[21] for a single-species reaction-diffusion
system. However and most importantly, our goal here is to
investigate the dependence of the asymptotics on the initial
correlations.
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We remark that in one dimension the initial stéf& and  (n2(t)nf(0))=pa()(1—e Aty + p,(0)e~ (BAlV2)
(78) is translationally invariant,

. . . . m,—m,,
(nm(0)Nf(0)) =(Njr|=jm-1)(0)NH(0)) Xa:ﬂ__’d Hp“ 1 (2Cat)
=Kij(1= 8 0)|r| "2+ pi(0) & ;Sjr) 0
(79) +ICAA E
(My#lg, ... mg#lg)

while in higher dimensiongd=2, see(77)] translational in- I R
variance is broken. This state of affairs has lead us to distin- X H mat “Im;—lalfAAAef(‘BAM)
guish in the discussions the one-dimensional case from its A d
higher dimensional counterparts. X1, —m (2Cab), (84)

(i) We begin with one dimensiond& 1), wherer=r,
=m-—1. Because of the translational invariance in the initial
state, we expect the noninstantaneous correlation function to
depend orr =m-—1, indeed,

(N(OINf(0)=(nr(HnG(0) x 3 B

= pa()(1—e 17l
+pa(0)e” (BAYA L1 (2Cat)

(NA(NP(0))=pa(=)(1—e W7t + kg

x| mi—1,|~Aase” (B2 o (2C,1),

(89
'HCAAZ ,u,er_rl||”|_AAAe_(‘BA‘t/2)
r’'#0
X1 (ZCAt) (80) <nﬁ(t)n|8(o)>:pB(OO)(l—e_dh'B‘t)_{_pB(o)
r—r’ y
- ~(d|Bg|t/2) m,—m/,
(N(INP(0)) = pa()(1—e~ 174l xe @es Tl
+Kng 2 ppy " |r'|TAnse (BAI2) Xlm —m (2Cgt) + Kgp
r’#0
X1 rfr’(ZCAt), (81) X 2 H Mg‘afma
(my#lg, ..., my#1g) a=1,..., d

(NE(HNP(0))=(nZ(t)ng(0))

X|mj—1,|teee (Bsl2) |\ (2Cq),
= p(ee)(1—e 17l '

(86)
+pB(0)ef(|BB‘t/2)MTB|r(ZCBt)
+ICBBZ MYB—r'|r/|—ABBe_(‘BB‘t/2) <nﬁ1(t)nf\(0)>:p3(00)(l—e_d‘78|t)+ICBA
r’'#0
ma—m;
o2 e <3 T
(my#lg, ..o, mg#lg) ¥
o e X[ —1|~Sne (Bs2) L (2Cqt).
+’CBAE /u“rBirl|r'|7ABAe*(‘BB‘t/2) &7
r'+0
xlr,rr(ZCBt). (83)

We see that in higher dimensions, because of the broken

Notice that when wag#0, then (nB(t)nf®(0))  symmetry of the initial state, the noninstantaneous correla-
#(n*B(t)n5"B(0)) because of the drift which is due to an tion functions no longer depends op=m,—I,. We can
asymmetric Markov generatat. Such a behavior has been study the asymptotic behavior of these noninstantaneous cor-
observed in single-species one-dimensional free-fermionicelation functions in an unified wayncluding bothd=1 and
models[19,1§. d=2), namely forr ,=m,—1I,, with |r |=|m,—1,|~|m,]

(i) In higher dimensionsd=2), the initial state is no >1, with r,=o,L and u;=L?%4|C;|t<c, in the regime
longer translationally invariant and witf7), (78), and(47), where |Ci|t,r>1, (i,j) (A,B), the correlation functions
we find are given hy
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(N (t)N](0))=p;(o=) (1—e~dInlt) + ex;{ZE o2y,
> - 2
_[r=slGilt o dl([Bi[12)-|Cil 2+ 2t

2|Ci|t

pi(0)e g U“u'ﬁi,j

+ K,

(4| Cj|t)42 A
e ol [uol 1
1-AF V7 4uCi|a?thi?

+0O(t72% |,

X

0<Ai‘}<1, (88)

where we use=3,r e, ande=¢3 e,

. Moreover,
(Nl (ONf(0)) = pj(0)(1—edilty

- = 2
2. r—6i|Ci|t
+ exp{ 2%: o2u (—2|Ci|t

% e~ dl(IBl2~cil2+ 21t

-3 2,
e O3
I

+ K _ﬂ {AH+O(t 2d)>

A>1. (89)

When A=
rections arlse namely,

(Nl (t)nf(0))=p;(oe)(1—e~dllty

+ ex;{ 2> olui— (

r—&|Cilt ?
2|Cit

< e-diBlR-Icr L
(4m|Ci|t)9
x| pi(0)e™ 2 “uis 4+ K,
x I In(4uo,lCilt)
a=1,... d
+O(t72) |, Af=1. (90)
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(ni(t)n{(0))

- — 2
r—e|Cilt
2 o | 1
ex;{zg o2u (—2|Ci|t ) }

- , AY<1.
(4m|c|t) 2 42 !

9D

On the contrary, weak spatial initial correlations do not af-
fect the long time behavior of correlation functions, since
(N(tnf(0))

- — 2
r—e|Cilt
P2 (S L
ex’{zg oalh ( 2[Cllt H

~ ., AT>1.
(4m|CiJt) 92 !

(92

The marginal casé{j=1 has logarithmic corrections

(ni(t)nl(0))
exr{zé O'iui_(—r zfg_hlh) (In4[Cj|t)*
- (471|Ci|1)92 ’
Ag=1. (93)

Notice the drift which occurs foe#0 and the effect of
dimensionality. The fact that initially the state is translation-
ally invariant d=1) gives rise to the asymptotic behavior
(t79) as for the nontranslationally invariant system in
higher dimensionsd=2).

1, a crossover takes place and logarithmic cor-

V. INSTANTANEOUS TWO-POINT CORRELATION
FUNCTIONS ON THE MANIFOLD V,

We now pass to the computation of the two-point corre-
lation function on the translation—invariant manifolg(d)
(21). From(17) and(18), the evolution equations of correla-
tion functions follow. We shall discuss both cases, when the
initial state is correlated and when it is uncorrelated. We
shall evaluate

gﬁlen—m\(t)E(”ﬁ”ﬁ])(t)E<nfm—n\né>(t)zg'ﬁA(t)a

G e m (D =(nEnE) (D) =(nf,_ o) () =G P8(t),
G jnem (D =(nANEY () =(nEnf) (D) =(nfy,_nE) (1)

=(nh_ o) (O=Gr81)=GA1) (94

with the boundary conditions at=0 [for the densities see

(57)]:

Therefore, when the spatial correlations are important, i.e.,

Af<1, correlation functiongat [ (|B;|/2)—|Ci|(2+ €/2d)]
=0) decay as

AB(1)=0.
(95)

AR =pa(t),  GEE (1) =pg(1),

036121-14



SOLUBLE TWO-SPECIES DIFFUSION-LIMITED . .. PHYSICAL REVIEW B3 036121

Notice that the poinfr|=1 must be dealt with care. Further, while for |[r|=1, we have(18),
it will be convenient to distinguish the one-dimensional
problem from that ird=2. In this section, in addition to the
definition of the Appendix A, we also introduce some spe-
cific notations and abbreviationisee Appendix B, Egs.

d
GO0 =(GI+BADGIA1) +CaGa(t) + EF

(B1)—(B3)]. Let us start the discussion with one spatial di- +(Fi+F2t+ An2)pa(t) + (F3+F) pa(D).
mension. (97)
A. One-dimensional instantaneous two-point correlation Forr=0, we recover
functions on V,(d=1) n A Ba+2Ca
On account of the above remarks afid), the equations gid0 (0= grpal)=—+{———|pa(t). (99

of motion for the correlation functions rea¢ (>1)
g The solution of the above set of coupled differential equa-
tions (96)—(98) can be expressed in terms of the modified

G O=BagP O+ CA GO+ G D]+ Arpa(t) Bessél f)un(ctic))ns A(2) (seg Appendix ¢ and for |r|=|n

(96)  —m|>0 we have
|
Daot D21t Do
GEAD ~[pa = ~[pa(0)e” AP pa(0)+ ———5 = |e Pl (2Ca0 + 2 G(0)e Al (2Ga0)
r'#0
D dBal| [t D54(|Bal = 7al)
+| Diot —5 fdre_lBAlTlr(ZCAT)-f— Dt ———(—— e 7l
A 0 A

A _
« ftdre*lB'*lm)ﬂr(chT)+ w) efwswtfthefoB;\HyB\)qr(zcm
0 A 0

t !
_f dt’ e~ IBal(t-t )g?A(t’) (99

0

(G2—Bal2) 4 ]
L | [2CA(t—t')]+2CAl [2CA(t—1t")]].
Ca at’

Similarly, we find

BB 2 ~|vglt12 Dg(ﬁ-Dgﬁ— Dgz —|Bglt BB —|Balt
G, () —(ps(t)*=—[pa(0)e" "B ]"+| pg(0) + s e Bl (2cgt) + X G 7(0)e 1B (2¢gt)
r’'+0
DB |B t D2 .(IBg|—|vgl)
+| DByt 25l f dre Bl (2057 + D?yl+—2'1| ol =176 -y
Cs 0 Cs

t B —
xf d7e<lBB|WB"TIr(chr)+(—D2’2(|B§| |m))elw
0 B

t t /
% fo dTef(|BB|f|yA|)T|r(ZCBT)_ J;) dt’ e*|BB|(tft )Q?B(t’)

GY—Bg/2
«| (G2~ B2 ) 8 1 (100

c — I, [2Cg(t—t")]+2Cg! [ 2C5(t—1"))
B at’

and we also obtain
GBI —[pa(t) pa(D)]1=[pa()pe(0)+ pa(0) pa() — pa() pg(oe) Je~l7at 7slt (102)
+(D£\E+D’2§+D§S)

o e Baslll (2Cagt) + X G1P(0)e IBasltl,  (2Chgt)

r’'#0

D55|Basl

t
+ T) fodre*|BAB‘Tlr(2CABT)

AB
Diot

AL Dé,?(|BAB|_|7A|)

+| Dy g Crn

t
) e*\mltf dre~(Basl=1val7| (2C,57)
0
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2,§(|BAB| - | 7B|)

CA B

AB

+ Dl,z

t ’
_ fodtr e*|BAB\(’[7’[ )g?B(tr)
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|

t
R f dre(Baal-1%8D7] (2C,57)
0

H3P+H3 - AZ— DY
CAB

1%

;

Tlr[ZCAB(t_t')]

t !
=20y [ dt e 1A IGRA (2,0t 1)].

To study the asymptotic behavior of these expressions, we (1c) For |B;|#2|Cj|, |v; +j|=|B;|—2[Cj|, [¥;|>0, and

shall distinguish two regimesi) long time, i.e.|Cj|t>1 and
large distances , i.er~L>1 with the ratiosrz/ICj|t<oo and
u=L2/4C|t< hold finite, and(ii) long time , i.e.,|C;|t
>1 and finite distances,<L—o with r2/|Cj|t<1 andu,
E|_2/4-|C||t<00
In order to investigate the effect of initial correlations on

the dynamics, we consider

Gli1=0(0)=pi(0)p;(O)[ 1| (signC)) T~ "], »=0,

(102
where[l e (AA,BB,AB), i,jcA,B].

Such a choice has been made for the one-dimensional

single-species symmetrid+ A« J+ process[21]. In

this section, we want to proceed with a systematic study of : : AB
P Y Y Ol The correlation functiong;’

instantaneous correlations, on the manifolg{d=1), with
the choice(102) for the initial state.

Below we shall use the incomplete gamma function,
I'(v,u)=/[dxe *x""1, as well as the Riemann zeta func-
tions {(v)=Z,=1k™ ", v>1. For notational simplicity, we
write v instead ofv,. The results for the asymptotics are
summarized as follows:

(1) For |B,|>2]|¢|, the decay of correlations is exponen-
tial. With the definition

we have
(1a) for @j;=|yal#|B;j|—2|C],
Gl () =Gl (=) ~eInlt; (104
GP () =GP (=)~ p;(0)%e~(BI72ADL (109
Note that in the case wheg(0)=0,Vr, we have
Qu(y; ,o)e (Bjl=2cht
if r<L
i i V4|t
Gr() =gy (=)~ Qu(u; ,o)e %~ (8y1=210) e
ifr>1,
(106

whereQ;(u;,0) is a function explicitly determined by the
processes which occur in the system under consideration.

Dj1,2+ 2(signC;)D} ,#0, we have

e Il if g =1yl

GO =GI()~{ alvimiltn |t it o (e
r r e 7i'# 7T|Cj| if @j; |y],#1|.

(107)

(1d) For [Bj|#2[c)|, |vj|=IBjl—2[Cj|, |¥jr+j|>0, and
D) 1+2(signC;) D), ,#0, we have

N N t
ty—Cli(oo)~ a7ty [ ——
Gl (1)-G7 (=)~e M\ T

J

(108

(t) have to be discussed
separately. With the definition

@as=min(| val,| v8|,[Basl = 2|Cagl), (109
(1e) for pag=|val#|B;j|—2|Cj|, we have
Gro(t) —Gr¥(e)~e Il (110
(1) For @ag=|7vsl#|Basl —2|Cagl, we have
GRE(t) = GPB(oe) ~e el (111

(19) For @ag=|Bag| —2|Cag/>0 andG i y#0, we have

GR2(1) = GPO(e=)~ pa(0) pg(0)e (Pasl~2(cnal)

(112
Notice again that iG#®(0)=0,Yr, we arrive at
GRB(t)— GAB(0)
. —(IBagl—2[Cagl)t
U ,o)e
Y, 9) if r<L
VA|Capglt
Ql(UAB,tJ’)ef‘TzuAB’(|BAB‘*2|CAB\)t
if r>1,
\/47T|CAB|t
(113

whereQ,(u;,o) is the same quantity as above.
(1h) For |Bag| #2|Cagl, |val=|Bagl—2|Cagl, and D1}
+2(signCpp) D5+ 0, we have
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e 1t if oap=|ygl In the regimer <L,
AB/+\ _ ~AB . 3 [t .
gr (t) gr (m) e |7A‘t 7T|C | |f ()DAB:|’YA|' f
he M fo< <1
(114 (4lc|t)"? ! "

(1i) For |Bag|#2|Cagl, |v8l=|Basl—2|Cagl, and D/fg

+2(signCag) D55+ 0, we have [24(v)+(40?u)|C )T~

Lery — ) (on) ;
“lyalt Gr(t) =G ()~ (GG if v>1,
e At if pag=|val
G =Grie)~y [t o In[4]C|u(1—o)t]
€ —— if pas=|7g|. if v=1,
7T|CAB| Ax|C 1/2
(116
(2) For |Bj|=2|¢||, the correlation functions decay alge-
braically. It is appropriate to distinguisi<L andr~L.
Again, o=r/L, | € (AA,BB,AB). where the following auxiliary function has been used:

1-v 1-v 5 1-v ) 1—v 5
r 2 +T 2 yoou | =T T,U|(1—O') =T T,U|(1+O')
Fi(u,o,v)= \/4_ , (117
T
while forr>1r=oL~L, we find
[ Fo(uy, o)
—— ifo<v<1
(4lclt?
2
1+e oM +((1=0)lo)(4o?u)|Clt) 172
6(6)-gl()—{ K E; |C“|)t)‘f,2( TN T g (119
!
In(4[Clut) _ o
| @l T
with the auxiliary function
e—0'2U| u|0_2
fz(UhO’,V)E—(l_V) - (119
Notice that when the initial correlations are absentQ),
(
Qi(u,0)+0O(1)
—————— if (<0
Jam|at '
u, i(0)p:(0)(1—
' (t)— G ()~ ¢ %+ﬂ(u,a,y)p'( )pji(S|C)|(|t KD < ang >0 (120
|
2
e o u, i(0)p;(0)(1—
%ﬂg(u,o,mp'( )pja(3|c)(|t b sq and >0,

whereQ;(u,o) has been defined previously.

From the above we infer that the initial conditions affect the asymptotic behavior of correlation functions only when the
latter decay algebraically116), (118), and (120). Provided the initial correlations are dominant<{(®,<1), the critical
exponent is renormalized, while for weak initial correlatiomgX1), the exponent is independent of initial correlations, i.e.,
1/2. The intermediate regime,;= 1, exhibits logarithmic dependence consistent with a marginal behavior.
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B. Two-point instantaneous correlation functions onV,(d) in arbitrary dimension

This section is devoted to the computation of correlation functions in arbitrary dimensierd)(on the manifoldv,(d).
With the notationsr=(rq, ... l4, ... fq), |r|=\/2ara2 (sometimes denoted by, for notational simplicity and r,

= \/(rai 1)%+ Ea#a,ri,, solving the multidimensional equations of motion of the correlation funciises Appendix D, we
arrive at the following explicit forms:

AT G B PNG)

Capa(0)+ D/é\,o+ Dé,ﬁ Dlé\,z
Ca

= —[pa(0)]7e™2aldt+

DS Bald) [t
D’fﬁﬂ) dr [T [e®al, (2¢7)]
’ Ca =1...d @

2 g TI 1e P, ocl+

r'#0 0 a=

D5 (1Bl = val) t
M)edlyﬂf dre d(BA-Inbr T 1, (2Ca7)
A 0 0.4 @

J’_

Di+d

Bal— t
+dD§’2edVB|t<%> deTe*d(IBAI*IVBI)T 11 | I, (2CaT)

a=

G3-BA2 4

we also have

g|Br|B:\(r1 ..... rd)|>0(t)_[pB(t)]2

= ~[pa(0))%e 2eldts

Capa(0)+ DB+ D5, +DE
BPA é,o 217 ~22 1—[ d [ei‘Ber (2Cs1)]
B a=1 «

+2 G I

Lo el (2G50
r'+0  a=L..

DB |Bg|d) [t
+| DB+ D2dBsld ) dr I [e /Bsl, (2¢5m)]
' CB a=1,... d @
2 (I1Bg| = vsl) t
+ D?l+dzlc—)edysllf dre-d(Bsl-lvehr J] 1, (2¢s7)
' B 0 a=1".. d «

Br|— t
+dD32ed7A|t(|B|C%> fodTe*d(\BBI*IYA\)T }_[ ) I, (2Cg7)

b
t !
—fdt' Gy(t")e dBelt=t) 2ced Iy ea—tyt—F—— — IT 1, [2ce(t-t)1], 122
0 a=1...d «°B Cs a= d @

and
Gh iy, - rgi=o(D —[Pa(pe(1)] (123

= —[pa()pa(0)+ pa(0)pa(=) — pa() pg(se)Je~ 1727 76ld—[ 5 (0) pg(0)Je~ dl7al+I7eDt
B B B
N ( D?,o"‘ DQ,1+D§,2) H

o L ety @]+ 2 o) TT [e7®slt, o (2Cagt)]

r'#0 0 ash

0 a=1
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D/é\?( | BAB| - | 7A|)
+| Dyi+d e

t
—dmnf dre-Bas-ba)r T 1. (2Cagr)
1 d «

a=1,...(

+dDAB(| Bas|— |yB|” —dMBltf dre d(Basl—lveD ] 1, (2Cag7)
d a

a=1 ...

fdt Gy(t")e dBasl(t= t)(chBd H I [2Cag(t—t")]

HiP+H3"—A?-DY 4
+ c — 11 1 [2Cae(t=t)] .
AB Jt'a=1...d ¢

Notice that these expression are valid,\&4{d), in arbitrary eji=min(|y|,|B;|—2|¢|). (124
dimension and setting=1 we recover the one-dimensional
expressions of the preceding section. (1a) If ¢j;=|val#IBj|—2|C;|, we have
We assume here that the initial state is characterized by a i i dlyit
random, translationally invariant, but uncorrelated initial dis- Gr () =Gy (o) ~e "k, (129

tribution, i.e.,gf,|>0(0)=pi(O)pj(O)-

The asymptotic behavior is obtained similarly to the one- (1b) If @j;=[B;| =2|C;[> andg4(0)#0, we have

dimensional case whe@|t>1 with u;=L?/4|C|t. Gli(t)— gl (e0)~ed(IBjl-2cit, (126)
(1) For [By|>2]c|, i [
is exponential, Finally, note that provided;, .,(0)=0, we find

[ Qu(uj,a,)e (Bil-2Ght

if r<L
(4mc;|t)?

Gl(t) =Gl ()~ (129

Qu(uj,o)exp — 2 oZu;—(|Bj|—2[¢t

\ (47T|Cj|t)d/2

if r>1,

whereQ,(u;,o,) is a known function determined by the processes occurring in the model under consideration.
(10 If |Bj|#2|C|, | )+ =1Bj|— i[>0, andD ,+2(signC;) D} ,#0, we have

e Mt it =]yl

t
it ——— i o=y
.. L. e 1] | ’
Gl(t)—Gll()~ 7|Cj @i =171 (128

e 2n+iltint if @ =|v;,4| andd=2
eid‘yj'?J‘t(47T|Cj|t)17d/2 if ¢J]:|7]/¢j| andd=3.

ad) 1t [Bj|#2[¢l, |v|=IBjl—2[¢l|, |yj+j|>0, and The functionsG #5(t) requires a separate discussion. With
D 1,+2(signC)) D 5,#0, we have the definition ofgag
@as=min(| yal,| v8|,|Bagl = 2|Casl)-
t
Iyt ——  ifd=
) ) eV \/7,|Cj| ifd=1 (10) If oap=|val#[Bj|—2|C)|, we have
GHO=GY ()~ 2y, -
r r e 2ltint ifd=2 gf\B(t)_gf\B(m)Ne—d\yAlt_ (130
e dnltamicltt-92 if d=3.
(129 (1) If oag=|7vsl#|Basl—2|Cagl, we have

036121-19



M. MOBILIA AND P.-A. BARES

GRB(t)— GPB(ee)~e delt,

(131

(19 If @ag=|Basl—2|Cagl#|va />0 andg; .,(0)#0,
we have

GPB(t) — GAB(o0) ~ @~ d(Basl~2Cal)t, (132

Again, whenG2,(0)=0,Yr, we arrive at

GRB(1) — GPB(=)
Q,(Upg,0,)e d1Basl~2(CasDt
if r<L
(47| Cag|t) ¥
- Q,(Upg,0,)e dUas—d(IBasl—2(CagDt
ifr>1,
(47| Cag|t) ¥

(133

whereQ,(uag,0,) has been defined previously.
(1h) If [Bag|#2|Cagl, |7al=1Basl—2|Cagl, and D%
+2(signCag) D55+ 0, we have
|
( 2
e 7%,(0)p;(0)

GHt) =Gl ()~

PHYSICAL REVIEW E 63 036121

G —g%(=)

e dvelt it ppp=| v
t
~[7alty [ if = dd=1
e [ an
_ 7T|CAB| PaB |7A|
e 2valtint if pag=|yal andd=2

e_dlyA‘t(47T|CAB|t)l_d/2 |f qDAle'yA| andd>3
(134
(1) If [Bag|#2|Cagl, |78l=|Bagl—2[Cagl, and D3
+2(signCas) D53+ 0, we have

GPRB(1) - GPB(=)

e WAt it ppp=|yal
t
—lyeltyf if — dd=1
e | an
_ 7T|CAB| PaB |’yB|
e leltint if pag=|7ys| andd=2

e el(4m|Cppt]' ") if eap=]7ye| andd=3.

(135

(2) For |B,|=2|¢|, the decay of correlation functions is
algebraic. We distinguish the regime<L, from that where
r~L (o=r/L, | e (AA,BB,AB).

In the limit r<L,

with the definition of the following auxiliary functions:

fl,a(ulo-aly)

In the regime where>1yr ,=o,L~L, we find

Gr(t) =G y(%)~

with the auxiliary functions defined as

(47r|C,|t)d/2 if (<0
(136)
QZ(U|,O'a) pI(O)pJ(O)a: ]:_‘_[_l’d fl,a(ulna'a,l/=0)
" if C|>O,
| (4Gt 8|t
1_V 1—V 2 1_1} 2 1_1} 2
r 2 +I > you | =T T,U|(l—o-a) -T T’u|(1+0'a)
Jam : (137)
( e§ 7290,(0)p;(0) '
(47T|C,|t)d’2 if C,<0
(138
Qu(Uy, o) pi(0)p;(0) 11_[ | FoolUy,o,,v=0)
2\U1,0 4 a=1."... -
L (47|C|t)9? 8lat if ¢,>0,
*a’iu 2
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Notice that setting’,(0)=0,Vr, leads to
uy,o,
Qz(uy,0,) <L
(4m|Cit])2
Qa(u :Ua)e_g oo

(4m|C;t))¥?

GHt)—GH()~

if r>1,
(140

where the functiorQ,(u, o) is as above.

PHYSICAL REVIEW B3 036121

Exact computation of the noninstantaneous two-point cor-
relation functions on a 50-parameters manifold for uncorre-
lated homogeneous, but random, initial states as well as for
initially correlated states, in arbitrary dimensions.

(iii) Exact results for the instantaneous two-point correla-
tion functions on a translationally invariant 31-parameters
space manifold in arbitrary dimensions.

(iv) Exploring the various classes of solutions for the one-
and two-point correlation functions, we have seen in real
space and time that there are essentially two regimes, a mas-
sive one and an algebraic one for the density and two-point

We see that for the uncorrelated initial state under consideorrelation functions. For noninstantaneous correlation func-
eration, the dimensionality of the problem has a nontrivialtion we have pointed out that a drift can occur due to an

effect on the dynamics. In fact, in the critical regit39
and (140, whend>2 the correlation functions decay &s'

asymmetry of the reaction-rates characterizing the stochastic
Hamiltonian. We have also shown that when initial correla-

instead oft “*2 as in lower dimensions. We further remark tions are strong enough, the critical exponents in the
that also in the massive case, the dimensionality of the modelsymptotic regime are renormalized while for weak initial
can have particular nontrivial effects on the asymptotic re-correlations, the long-time behavior is insensitive to and in-

gime [see, e.g., Eq9128), (129, (134), and(135)]. Let us

dependent of the initial state.

conclude by noting that all results obtained in this section are Our approach applied on three-states mog&i$ard-core
compatible and in agreement with the previous one-articleg is in a sense complementary to previous rigorous

dimensional results.

VI. CONCLUSIONS

results[15] (see the end of Sec. )lland allows to study
exactly physical models such ashaee-stategrowth model
[10]. From our analysis, it followgalternatively, using the
Rauth—Hurwitz conditions and simple algebthat in arbi-

In this technical paper, we have classified the solutions ofrary dimensions, two-species models belonging to the class
the two-species bimolecular diffusion-limited reaction mod-of soluble models discussed here, do not exhibit phase tran-
els and have been able to obtain exact and explicit resultsitions, nor pattern formation. This has led usctmjecture

namely the following.

that such a property holds true, goluble models (in the

(i) The Fourier-Laplace transform of the density and ofsense discussed herfar an arbitrary number of species

the noninstanateous two-point correlation functiofuy-
namic form factors on a 56-parameters space, in arbitrary

dimensions.

(i) Exact computation, in arbitrary dimensions, of the
density on a 50-parameters manifold for various initial con-

ditions.

and in arbitrary dimensions.
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APPENDIX A: DEFINITIONS AND ABBREVIATIONS

In this appendix we introduce the definitions which are adopted throughout the paf9) &md in the following, we have

used these notations:
=Tgo+ 5o+ g, EF18+F%3+F16—A8,
_110
B§‘=F02+F F ,

C5=Tg1+I5i+T51—Cs,

AS=T 0+ T3I+T 53— A3,
5=I05+ 55+ 55,

21 ~a
I=I9%+T3+T35-Cs,

=T30+ T35+ 35— A3,
a_101 11 21 a
1=T'10+ 16+ T'75—Cq,

D3=I93+Ta3+33—C3, Al=I30+I33+T33,

(A1)
A =TR+TIG+T5-AY, AS=TR+T5+T55-A, BY=I30+T55+T55—-A), BY=I30+T53+T55-Af,
Ch=rie i, Ch=r%erierfi-ch cherierierg-ch
DI=I'26+T35+ 35— Co. D3=I63+ g5+ 53— Co.
Further we also use the following notations:
6=T0, EO_FOOv ab_Foo’ ba_Foo’ 1=T15 oo, FQEF -T, (A2)
FibEF 1woo: Fgazr FOOa FSEF I‘007 FgEF 1ﬂoo: ngzr FOO* Flz)aEF 1ﬂoo:

Fa F%é Foo' FgEF 1ﬂ00v

b_
Fa F%é IjOO’

*=I'%—T6s Fi=Tgz—Tgo, Fa=I5-T55,
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Fa’=I55-T55, Fa*=Ig-T5, Gi=Igo+Ii-Tgi—T15, Gi=I§+Tii-T5-T73,
GP=IfE i TH-TH, GP=THeH-TE-TR, ei=rieTi-ri-TH,
Gy=Tg5-I55-T55-T35, G3°=Tgo+T55-T55-T35, Gy=I55+I55-T5- T,

=051+ 55— Tgi—T35, H3=Tge+Ti3-Tig-Tg3, Hi=T31+T55-T51-T3%,
Hp=I56+ 13- T15-T3, H3"=Igo+ 13- T35,
H3=T3o+T5-T5;—Tl5, Hi"=Ig3+T3i-T5-Toi, H*=I5+ 51— T3 T
Notice that in the expressions above, E@sl) and(A2), the ratesi"gg have not been made explicit for brevity.

APPENDIX B: DEFINITIONS FOR SEC. V
In Sec. V, in addition tdAl) and (A2), we will also use the following additional definitions :
AA—Z(Aa+C ), BAEZ(A?— cg), CAEAg—i- cs,

B
'D?,OE__<_A_CA+AA

B
dpa(), D{i\,lz(fA

—Cat Aa|d[pa(*) —pa(0)], (B1)

A A
D;‘,OEE8+(Fi‘+F§—f—cA)pA<oo>+<F§+Fi>pB<oo>, D}= FT+F;‘—TA—CA)[pMO)—pA(oo)],

Dy =(F3+F3[pe(0)—pa()],

Ag=2(A3+CB), Bg=2(BY+DY), Cg=B5+D?,

dpp(*), (B2)

8 Bg
Dig=—— __CB+-AB

B
D?,lz(fB —Cgt+ Ag |d[pa(*) —pa(0)],

A
DS g=Eg+ (Fi+F3)pa(ce) + F3+F3— 5"~ Ca[pe(0) — pa(=)],

A
F§+F2— 7B_CB)PB(°°), Dz 1=

22_(F1+F2)[PA(0) pa(®)],

and
B,+B
Ans1=Apl2,  Apg=Aal2, BABEW, CABEA -|—Db B+Db,
Dro=—LAL pa(*) +A3%p(*)]1d,  Dri=—AT"pa(0)—pa(>)]d, (B3)

Dy5=— A5%[pa(0)— pe()]d, DHE=EZ+ (F*+F3°—CH)pa(se)+ (F3*+F3°— AZ) pg(=),
Dy =(F3*+F3"—CH)[pa(0)—pa()], Dh53=(F5*+F5°—CH)[ps(0)— pa(=)],
wherepa() =[ (A3+C2)/2| y|] and pg(=) =[(AS+CB)/2|yg|], as in Sec. III.

APPENDIX C: ONE-DIMENSIONAL TWO-POINT CORRELATION FUNCTION ON  V,, THE EQUATIONS OF MOTION
AND THEIR SOLUTIONS

In one dimension the equations of moti@6)—(98) of the correlation functions can be written as an unique difference
equation:
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A1) =BAGPAL) + CAL G (1) + G2 (D ]+ Appa(D) + (DL gt DL 8729 8, g+ (D5 g+ D 274
+ Dé,zemt)( S 1t 6 —1) T [(GF—Bal2) (5 1+ 6, —1)— 2CA5r,O]g/1_\A(t)- (Cy

The solution is

G —[pah) 2= —[pa(0)e 14112+ p,(0)eIBAY (24t + D) G (0)eBalll_(2Cat)
r’'+0

t !
+J0dt' e IBADR [ 2CA(t—t) ]+ Do {14 1[ 2Ca(t—t") ]+ 1, _4[2CA(t—1)]})
t r ’
+D§\1f0dt/ e IBAt=e=Inlt') 12¢,(t—1")]
t ’ ! !
+ J dt’ e B (D) e IPAl £ D e I78I) 1, 4 [2Ca(t—t")]+ 1, _4[ 2Ca(t—1") ]}
0

t
- Jodt/ e 1BAIGAA 1) (Ga—Bp2) {1+ [ 2Ca(t—t')]+1,_y[2Ca(t—1")]

—2Cal [2CA(t—1")T}). (C2

Similarly for the B—B correlation functions we get

—QBB( t)=BgG B (t) +Cal G221 (D) + GPP (t)]+ABPB(t)+(Dl0+D11ey'3t)5 0+(Dzo+D2 1eth+DBﬁ7At)

X (8, 1+ 6, 1) +[(GE—Bg/2)(8, 1+ 8, 1) — 2Ced, o]G2E(1) (C3

and for theA—B correlation function, we have

d
G197 20 =BagG 1 P(1) + Cagl G P1(1) + GPP1 (1) ]+ Apg pa(t) + Ang aps(t) + (D15 + DT + D157 5, o

+(Dy o+ DyRe A + Dp5e78) (8 1+ 8y 1) +[(HI™+ H3"— (AT+D2))(8 1+ &, -1) — 2Cady 0lG1 (D).
(CH
EquationgC3) and(C4) are solved in a similar way d€2). The above expressions fgr'ﬁj (t), (i,j)e(A,B) can be rewritten
in a more compact forng99)—(101) using the properties of the modified Bessel functiby().

APPENDIX D: CORRELATION FUNCTIONS ON V, IN ARBITRARY DIMENSION. THE EQUATIONS OF MOTION
AND THEIR SOLUTIONS

The equations of motion are the higher dimensional counterparts of the previous equafipr€4), i.e.,

d
GOy, (D =BAdGPAD +Ca 2 [G7A0)+ G A 1+ dAppa(t) + (DIt D 6™ AT o0
+ (Dot Do+ Do) 2, (5 oot 8 o) 11 01 0
a' #a
| (CI-BADZ (30,401, e) 11 0 0=2Cd TI & oldifLs0), (D1)
a a' #a
and
d BB BB B B Ldygt
G-Iy (D =BadGPP(D)+Ca 2 [G (1) +G 1)+ dAgpe(t) +(Dig+ DL ) I 90

.....
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+(D3 g+ D5 9781+ D5 £ D (8 eat 8, _ea)

I1

+|(G)-Bgl2) > (8 e+ 8 o)

and also

x I & ot| (H3+H3"—AF-

!
aFa

The solution of(D1) is

(ry. . a g (D= [Pa(D]?

— ~pa(O)Fe s 00 e T

I1

a=1,...

x>

a

X

IT 1. [2cat—t)]

a'#a

I1

t
—|Bald(t—t’ - dt’
+f dt’ e [BAd0- DA oI
0 a=1,... d

X (DQ@*WAWV 4 Dgze*|78|dt’)2 {

a'#a

+ [ et 1y ci-8a2 S

a#a’

Dg)g (

}(lw[ch(t—
I

II .,

PHYSICAL REVIEW E 63 036121

H 5ra,,0

a#a’

50072060 T1 80 oldhfa® (D2)

.....

5 et o) 1L 0 0= 2Ced I1 60 o Ghfa(D)-
DH&HI a=1,...
(D3)
lr (2Cat)+ 2 G (0)e [l
“ r’'#0
t !
DR 11 ) Ira[ZCA(t—t’)]+D§0f0dt’ e [Bald(t=t)
t)]+1r —a[2Ca(t—=1")])
t ’
[ZCA(t—t’)]Jrf dt’ e [Bald(t=t)
@ 0
[2CAt=t)] |l va(- )+l o+ )]
IT 1 [2CAt=t)1|[1, ca(-- )+ 1p -+ )]
o' Fa
e Bty [2¢,(t—11)], (D4)

where the abbreviated notation-( ) instead of 2C4(t—t’)] has been used. Other correlation functighig'(t) andGf;F(t)

are obtained in a similar way. Properties of the Bessel functions and elementary manipulations lead to the more compact forms

(121)—(123.
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